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Hamiltonian Simulation Experiment - Technical Details

The vastly diverse physical properties of various materials have always played a crucial role in science and
engineering. Since experiments are costly and classical simulation falls short, using quantum computers for
simulations promises a huge potential. In this experiment we show how the Ion-Trap Quantum Computers
of AQT can be used to simulate a magnetic system. Thus demonstrating the potential of quantum
computers for material simulations.

The German IT service provider SVA System Vertrieb Alexander GmbH employs an AQT quantum
computer to simulate macroscopic properties of a magnetic system, demonstrating the potential of quantum
computers for material simulations. The material properties have always played a crucial role in science
and engineering. Experiments in laboratories are costly and classical computers fall short in simulating
quantum systems. These motivations led to the development of a new type of computer paradigm based
on quantum physics: quantum computers. Their inherent utilization of quantum effects makes them the
perfect candidates to simulate quantum systems efficiently. In the following paragraphs, we will show how
the Ton-Trap Quantum Computers of AQT can be used to simulate magnetic systems. In our experiment,
we want to measure the total magnetization of a simple Ising model after a certain amount of time has
passed. We will discuss the formal system description, its formulation in the terms of a quantum circuit
and finally the execution on a real quantum device.

Problem formulation

Magnetic systems are all-around us, but explanation of their behaviour (effects) requires sophisticated
models due to their large sizes and the long-range nature of the magnetic force. One of the simplest
models for magnetism is the one-dimensional transverse-field Ising model, which consists of spins located
on a chain. The spins interact with their nearest neighbours and with an additional external field.
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Two constants J, h represent the strength of the interaction between each two spins and between the
external field and each spin, respectively. To describe the system from a mathematical point of view, we
use a state-vector |¢(t)) and a Hamiltonian which takes into account all interactions:

H=H.+H,= Y Joioj+» hof,
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where o with a € {z,y, 2z} are Pauli-Operators describing the three distinct spin orientations. Both
entities are related by the Schrodinger equation which describes the time evolution of the state-vector. As
H is not time-dependent, the Schrédinger equation can be formally solved:
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[(2)), = |(t)) = exp (—itH) [¢(t = 0)).

As part of this formal solution, a new operator arises, called time evolution operator:

U, = exp (—itH).

With the help of this operator, we can calculate the state of our system after an evolution for time ¢ given
the current state of the system. In practice, it is crucial to find an efficient representation of this operator
in terms of a quantum circuit. Since a direct implementation of the time evolution operator is usually
not possible, we resort to two approximation schemes. The first idea is to break down the full evolution
into smaller time steps with ¢/ = ¢/R which will allow us to use small time approximation schemes,
called trotterization. The constant R determines the number of time-steps separating the total time ¢.



Additionally, we want to break up the sums in our Hamiltonian which will make the implementation with
quantum circuit possible, while creating a small specific error.

Uy = exp (—it'(H,, + H,)) =~ exp(—it'H,,)exp (—it' H,) =~ H exp (—it' Jojo}) Hexp (—it'ho?) .
<j,k> J

These two terms can be implemented very easily since they relate to rotation gates on two and single
qubit, respectively. As we can see in the following definition

exp (—igbaf) = R.(2¢) and exp (—z'd)aja,i) = GMS(29),

with some arbitrary real angle ¢. The latter gate is called Mglmer—Sgrensen gate.

The circuit for the calculation can now be composed as:
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Magnetization of a magnetic system describes the measure of alignment of its individual parts with respect
to some direction. The maximal magnetization is reached when the spin of each individual element aligns
along the same direction. We talk about minimal magnetization when all spins are randomly oriented
in such a way that their overall contribution cancels out. We are interested in the second power of the
magnetization along the z-axis to avoid possible negative values

M2 = |((t)] Zajlw(t)ﬂ2

Experimental Execution

In our experiment, we want to measure the final magnetization of an Ising chain in an external transversal
magnetic field and after a fixed amount of time. As the starting state we assume the Ising chain being
fully magnetized along z-axis. To get an idea of how the system behaves, we calculate this property for
various values of the exchange interaction of the spins J.

A quantum computer based on trapped ions seems to be the ideal candidate for such simulation. For
example, the two-qubit rotation gates (called Mglmer—Sgrensen gates) implementing the time evolution
belong to the native gate set of the trapped ion quantum computer. In particular, we use the latest
generation system from AQT called IBEX. Additionally, we can rely on an abundance of open-source
software like Qiskit which allows a simple and straightforward implementation of our problem.

Unfortunately, the direct and unprocessed experimental results do not exhibit the expected features, since
IBEX, as all other first generation quantum devices, performs with errors leading to noise. Nonetheless,
such noise can be suppressed with error mitigation method called zero-noise extrapolation to such an
extent that allows us to obtain improved and meaningful results. We do not have to implement the
method ourselves, but we can rather utilize the well-known open-source error-mitigation software mitiq
and apply it to our simulation. The results were obtained with zero-noise-extrapolation method with
linear fit and scale factors of [1.25, 1.50, 1.75, 2.00].



Discussion

In the plots below we see the second power of magnetization for different number of qubits, i.e., spins, in
dependence on the exchange interaction J. Let us note that we keep h = 1, R = 20 and ¢t = 1 throughout
our calculations. The blue line refers to a noise-free simulation of the trotterized problem which can be
seen as the baseline. Furthermore, we see the red and green curves which correspond to the simulation on
the quantum system with and without error mitigation, respectively. Comparing the results for different
qubit numbers, we see a good performance when error-mitigation is used.

The negligible difference between mitigated and non-mitigated results for the 2-spin experiment reflects
the high fidelity of the IBEX Q1 single- and double-qubit gates. The difference increases with the number
of spins as the depth of the circuit grows with the qubit count. For deeper circuits the qubit coherence
times start to play a role and affect the results as an additional source of error.

With the error-mitigation technique we were able to reproduce the expected behavior of the 8-spin system
demonstrating small overall gate errors and great qubit control. The present results reveal great potential
for the future development and applications.
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